Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 23(7): 18, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505915

RESUMO

The activity of neurons is influenced by random fluctuations and can be strongly modulated by firing rate adaptation, particularly in sensory systems. Still, there is ongoing debate about the characteristics of neuronal noise and the mechanisms of adaptation, and even less is known about how exactly they affect perception. Noise and adaptation are critical in binocular rivalry, a visual phenomenon where two images compete for perceptual dominance. Here, we investigated the effects of different noise processes and adaptation mechanisms on visual perception by simulating a model of binocular rivalry with Gaussian white noise, Ornstein-Uhlenbeck noise, and pink noise, in variants with divisive adaptation, subtractive adaptation, and without adaptation. By simulating the nine models in parameter space, we find that white noise only produces rivalry when paired with subtractive adaptation and that subtractive adaptation reduces the influence of noise intensity on rivalry strength and introduces convergence of the mean percept duration, an important metric of binocular rivalry, across all noise processes. In sum, our results show that white noise is an insufficient description of background activity in the brain and that subtractive adaptation is a stronger and more general switching mechanism in binocular rivalry than divisive adaptation, with important noise-filtering properties.


Assuntos
Disparidade Visual , Visão Binocular , Humanos , Visão Binocular/fisiologia , Dominância Ocular , Percepção Visual/fisiologia , Encéfalo , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...